Category Archives: Publications

The Trials Tracker and post-truth politics

The All Trials campaign was founded in 2013 with the stated aim of ensuring that all clinical trials are disclosed in the public domain. This is, of course, an entirely worthy aim. There is no doubt that sponsors of clinical trials have an ethical responsibility to make sure that the results of their trials are made public.

However, as I have written before, I am not impressed by the way the All Trials campaign misuses statistics in pursuit of its aims. Specifically, the statistic they keep promoting, “about half of all clinical trials are unpublished”, is simply not evidence based. Most recent studies show that the extent of trials that are undisclosed is more like 20% than 50%.

The latest initiative by the All Trials campaign is the Trials Tracker. This is an automated tool that looks at all trials registered on clinicaltrials.gov since 2006 and determines, using an automated algorithm, which of them have been disclosed. They found 45% were undisclosed (27% of industry sponsored-trials and 54% of non-industry trials). So, surely this is evidence to support the All Trials claim that about half of trials are undisclosed, right?

Wrong.

In fact it looks like the true figure for undisclosed trials is not 45%, but at most 21%. Let me explain.

The problem is that an automated algorithm is not very good at determining whether trials are disclosed or not. The algorithm can tell if results have been posted on clinicaltrials.gov, and also searches PubMed for publications with a matching clinicaltrials.gov ID number. You can probably see the flaw in this already. There are many ways that results could be disclosed that would not be picked up by that algorithm.

Many pharmaceutical companies make results of clinical trials available on their own websites. The algorithm would not pick that up. Also, although journal publications of clinical trials should ideally make sure they are indexed by the clinicaltrials.gov ID number, in practice that system is imperfect. So the automated algorithm misses many journal articles that aren’t indexed correctly with their ID number.

So how bad is the algorithm?

The sponsor with the greatest number of unreported trials, according to the algorithm, is Sanofi. I started by downloading the raw data, picked the first 10 trials sponsored by Sanofi that were supposedly “undisclosed”, and tried searching for results manually.

As an aside, the Trials Tracker team get 7/10 for transparency. They make their raw data available for download, which is great, but they don’t disclose their metadata (descriptions of what each variable in the dataset represents), so it was rather hard work figuring out how to use the data. But I think I figured it out in the end, as after trying a few combinations of interpretations I was able to replicate their published results exactly.

Anyway, of those 10 “undisclosed” trials by Sanofi, 8 of them were reported on Sanofi’s own website, and one of the remaining 2 was published in a journal. So in fact only 1 of the 10 was actually undisclosed. I posted this information in a comment on the journal article in which the Trials Tracker is described, and it prompted another reader, Tamas Ferenci, to investigate the Sanofi trials more systematically. He found that 227 of the 285 Sanofi trials (80%) listed as undisclosed by Trials Tracker were in fact published on Sanofi’s website. He then went on to look at “undisclosed” trials sponsored by AstraZeneca, and found that 38 of the 68 supposedly undisclosed trials (56%) were actually published on AstraZeneca’s website. Ferenci’s search only looked at company websites, so it’s possible that more of the trials were reported in journal articles.

The above analyses only looked at a couple of sponsors, and we don’t know if they are representative. So to investigate more systematically the extent to which the Trials Tracker algorithm underestimates disclosure, I searched for results manually for 100 trials: a random selection of 50 industry trials and a random selection of 50 non-industry trials.

I found that 54% (95% confidence interval 40-68%) of industry trials and 52% (95% CI 38-66%) of non-industry trials that had been classified as undisclosed by Trials Tracker were available in the public domain. This might be an underestimate, as my search was not especially thorough. I searched Google, Google Scholar, and PubMed, and if I couldn’t find any results in a few minutes then I gave up. A more systematic search might have found more articles.

If you’d like to check the results yourself, my findings are in a csv file here. This follows the same structure as the original dataset (I’d love to be able to give you the metadata for that, but as mentioned above, I can’t), but with the addition of 3 variables at the end. “Disclosed” specifies whether the trial was disclosed, and if so, how (journal, company website, etc). It’s possible that trials were disclosed in more than one place, but once I’d found a trial in one place I stopped searching. “Link” is a link to the results if available, and “Comment” is any other information that struck me as relevant, such as whether a trial was terminated prematurely or was of a product which has since been discontinued.

Putting these figures together with the Trials Tracker main results, this suggests that only 12% of industry trials and 26% of non-industry trials are undisclosed, or 21% overall (34% of the trials were sponsored by industry). And given the rough and ready nature of my search strategy, this is probably an upper bound for the proportion of undisclosed trials. A far cry from “about half”, and in fact broadly consistent with the recent studies showing that about 80% of trials are disclosed. It’s also worth noting that industry are clearly doing better at disclosure than academia. Much of the narrative that the All Trials campaign has encouraged is of the form “evil secretive Big Pharma deliberately withholding their results”. The data don’t seem to support this. It seems far more likely that trials are undisclosed simply because triallists lack the resources to write them up for publication. Research in industry is generally better funded than research in academia, and my guess is that the better funding explains why industry do better at disclosing their results. I and some colleagues have previously suggested that one way to increase trial disclosure rates would be to ensure that funders of research ringfence a part of their budget specifically for the costs of publication.

There are some interesting features of the 23 out of the 50 industry-sponsored trials that really did seem to be undisclosed. 9 of them were not trials of a drug intervention. Of the 14 undisclosed drug trials, 4 were of products that had been discontinued and a further 3 had sample sizes less than 12 subjects, so none of those 7 studies are likely to be relevant to clinical practice. It seems that undisclosed industry-sponsored drug trials of relevance to clinical practice are very rare indeed.

The Trials Tracker team would no doubt respond by saying that the trials missed by their algorithm have been badly indexed, which is bad in itself. And they would be right about that. Trial sponsors should update clinicaltrials.gov with their results. They should also make sure that the clinicaltrials.gov ID number is included in the publication (although in several cases of published trials that were missed by the algorithm, the ID number was in fact included in the abstract of the paper, so this seems to be a fault of Medline indexing rather than any fault of the triallists).

However, the claim made by the Trials Tracker is not that trials are badly indexed. If they stuck to making only that claim, then the Trials Tracker would be a perfectly worthy and admirable project. But the problem is they go beyond that, and claim something which their data simply do not show. Their claim is that the trials are undisclosed. This is just wrong. It is another example of what seems to be all the rage these days, namely “post-truth politics”. It is no different from when the Brexit campaign said “We spend £350 million a week on the EU and could spend it on the NHS instead” or when Donald Trump said, well, pretty much every time his lips moved really.

Welcome to the post-truth world.

 

Are a fifth of drug trials really designed for marketing purposes?

A paper by Barbour et al was published in the journal Trials a few weeks ago making the claim that “a fifth of drug trials published in the highest impact general medical journals in 2011 had features that were suggestive of being designed for marketing purposes”.

That would be bad if it were true. Clinical trials are supposed to help to advance medical science and learn things about drugs or other interventions that we didn’t know before. They are not supposed to be simply designed to help promote the use of the drug. According to an editorial by Sox and Rennie, marketing trials are not really about testing hypotheses, but “to get physicians in the habit of prescribing a new drug.”

Marketing trials are undoubtedly unethical in my opinion, and the question of how common they are is an important one.

Well, according to Barbour et al, 21% of trials in high impact medical journals were designed for marketing purposes. So how did they come up with that figure?

That, unfortunately, is where the paper starts to go downhill. They chose a set of criteria which they believed were associated with marketing trials. Those criteria were:

“1) a high level of involvement of the product manufacturer in study design 2) data analysis, 3) and reporting of the study, 4) recruitment of small numbers of patients from numerous study sites for a common disease when they could have been recruited without difficulty from fewer sites, 5) misleading abstracts that do not report clinically relevant findings, and 6) conclusions that focus on secondary end-points and surrogate markers”

Those criteria appear to be somewhat arbitrary. Although Barbour et al give 4 citations to back up those criteria, none of the papers cited provides any data to validate those criteria.

A sample of 194 papers from 6 top medical journals were then assessed against those criteria by 6 raters (or sometimes 5, as raters who were journal editors didn’t assess papers that came from their own journal), and each rater rated each paper as “no”, “maybe”, or “yes” for how likely it was to be a marketing trial. Trials rated “yes” by 4 or more raters were considered to be marketing trials, and trials with fewer than 4 “yes” ratings could also be considered marketing trials if there were no more than 3 “no” ratings and a subsequent consensus discussion decided they should be classified as marketing trials.

The characteristics of marketing trials were then compared with other trials. Not surprisingly, the characteristics described above were more common in the trials characterised as marketing trials. Given that that’s how the “marketing” trials were defined, that outcome was completely predictable. This is a perfectly circular argument. Though to be fair to the authors, they do acknowledge the circularity of their argument in the discussion.

One of the first questions that came to my mind was how well the 6 raters agreed. Unfortunately, no measure of inter-rater agreement is presented in the paper.

Happily, the authors get top marks for their commitment to transparency here. When I emailed to ask for their raw data so that I could calculate the inter-rater agreement myself, the raw data was sent promptly. If only all authors were so co-operative.

So, how well did the authors agree? Not very well, it turns out. The kappa coefficient for agreement among the raters was a mere 0.36 (kappa values vary between 0 and 1, where 0 is no better than guessing and 1 is perfect agreement, with values above about 0.7 generally considered to be acceptable agreement). This does not suggest that the determination of what counted as a marketing trial was obvious.

To look at this another way, of the 41 trials characterised as marketing trials, only 4 of those trials were rated “yes” by all raters, and only 9 were rated “yes” by all but one. This really doesn’t suggest that the authors could agree on what constituted a marketing trial.

So what about those 4 trials rated “yes” by all reviewers? Let’s take a look at them and see if the conclusion that they were primarily for marketing purposes stacks up.

The first paper is a report of 2 phase III trials of linaclotide for chronic constipation. This appears to have been an important component of the clinical trial data leading to licensing of rifamixin for IBS, as the trials are mentioned in the press release where the FDA describes the licensing of the drug. So the main purpose of the study seems to have been to get the drug licensed. And in contrast to point 6) in the criteria for determining a marketing study, the conclusions were based squarely on the primary endpoint. As for point 5), obviously the FDA thought the findings were clinically relevant as they were prepared to grant the drug a license on the back of them.

The second is a report of 2 phase III trials of rifamixin for patients with irritable bowel syndrome. Again, the FDA press release shows that the main purpose of the studies was for getting the drug licensed.  And again, the conclusions were based on the primary endpoint and were clearly considered clinically relevant by the FDA.

The third paper reports a comparative trial of tiotropium versus salmeterol for the prevention of exacerbations of COPD. Tiotropium was already licensed when this trial was done so this trial was not for the purposes of original licensing, but it does appear that it was important in subsequent changes to the licensing, as it is specifically referred to in the prescribing information.  Again, the conclusions focussed on the primary outcome measure, which was prevention of exacerbations: certainly a clinically important outcome in COPD.

The fourth paper was also done after the drug was originally licensed, which in this case was eplerenone. The study looked at overall mortality in patients with heart failure. Again, the study is specifically referenced in the prescribing information, and again, the study’s main conclusions are based on the primary outcome measure. In this case, the primary outcome measure was overall mortality. How much more clinically relevant do you want it to be?

Those 4 studies are the ones with the strongest evidence of being designed for marketing purposes. I haven’t looked at any of the others, but I think it’s fair to say that there is really no reason to think that those 4 were designed primarily for marketing.

Of course in one sense, you could argue that they are all marketing studies. You cannot market a drug until it is licensed. So doing studies with the aim of getting a drug licensed (or its licensed indications extended) could be regarded as for marketing purposes. But I’m pretty sure that’s not what most people would understand by the term.

So unfortunately, I think Barbour et al have not told us anything useful about how common marketing studies are.

I suspect they are quite rare. I have worked in clinical research for about 20 years, and have worked on many trials in that time. I have never worked on a study that I would consider to be designed mainly for marketing. All the trials I have worked on have had a genuine scientific question behind them.

This is not to deny, of course. that marketing trials exist. Barbour et al refer to some well documented examples in their paper. Also, in my experience as a research ethics committee member, I have certainly seen studies that seem to serve little scientific purpose and the accusation of being designed mainly for marketing would be reasonable.

Again, they are rare: certainly nothing like 1 in 5. I have been an ethics committee member for 13 years, and typically review about 50 or so studies per year. The number of studies I have suspected of being marketing studies in that time could be counted on the fingers of one hand. If it had been up to me, I would have not given those studies ethical approval, though other members of my ethics committee do not share my views on the ethics of marketing trials, so I was outvoted and the trials were approved.

So although Barbour et al ask an important question, it does not seem to me that they have answered it. Still, by being willing to share their raw data, they have participated fully in the scientific process. Publishing something and letting others scrutinise your results is how science is supposed to be done, and for that they deserve credit.

 

 

 

Spinning good news as bad

It seems to have become a popular sport to try to exaggerate problems with disclosure of clinical trials, and to pretend that the problem of “secret hidden trials” is far worse than it really is. Perhaps the most prominent example of this is the All Trials campaign’s favourite statistic that “only half of all clinical trials have ever been published”, which I’ve debunked before. But a new paper was published last month which has given fresh material to the conspiracy theorists.

The paper in question was published in BMJ Open by Jennifer Miller and colleagues. They looked at 15 of the 48 drugs approved by the FDA in 2012. It’s not entirely clear to me why they focused on this particular subgroup: they state that they focused on large companies because they represented the majority of new drug applications. Now I’m no mathematician, but I have picked up some of the basics of maths in my career as a statistician, and I’m pretty sure that 15 out of 48 isn’t a majority. Remember that we are dealing with a subgroup analysis here: I think it might be important, and I’ll come back to it later.

Anyway, for each of those 15 drugs, Miller et al looked at the trials that had been used for the drug application, and then determined whether the trials had been registered and whether the results had been disclosed. They found that a median (per drug) of 65% of trials had been disclosed and 57% had been registered.

This study drew the kinds of responses you might expect from the usual suspects, describing the results as “inexcusable” and “appalling”.

SAS tweet

Goldacre tweet

(Note that both of those tweets imply that only 15 drugs were approved by the FDA in 2012, and don’t mention that it was a subgroup analysis from the 48 drugs that were really approved that year.)

The story was picked up in the media as well. “How pharma keeps a trove of drug trials out of public view” was how the Washington Post covered it. The Scientist obviously decided that even 65% disclosure wasn’t sensational enough, and reported “just one-third of the clinical trials that ought to have been reported by the trial sponsors were indeed published”.

But as you have probably guessed by now, when you start to look below the surface, some of these figures are not quite as they seem.

Let’s start with the figures for trial registration (the practice of making the design a trial publicly available before it starts, which makes it harder to hide negative results or pretend that secondary outcomes were really primary). Trial registration is a fairly recent phenomenon. It only really came into being in the early 2000s, and did not become mandatory until 2007. Bear in mind that drugs take many years to develop, so some of the early trials done for drugs that were licensed in 2012 would have been done many years earlier, perhaps before the investigators had even heard of trial registration, and certainly before it was mandatory. So it’s not surprising that such old studies had not been prospectively registered.

Happily, Miller et al reported a separate analysis of those trials that were subject to mandatory registration. In that analysis, the median percentage of registered trials increased from 57% to 100%.

So I think a reasonable conclusion might be that mandatory trial registration has been successful in ensuring that trials are now being registered. I wouldn’t call that “inexcusable” or “appalling”. I’d call that a splendid sign of progress in making research more transparent.

So what about the statistic that only 65% of the trials disclosed results? That’s still bad, right?

Again, it’s a bit more complicated than that.

First, it’s quite important to look at how the results break down by phase of trial. It is noteworthy that the vast majority of the unpublished studies were phase I studies. These are typically small scale trials in healthy volunteers which are done to determine whether it is worth developing the drug further in clinical trials in patients. While I do not dispute for a minute that phase I trials should be disclosed, they are actually of rather little relevance to prescribers. If we are going to make the argument that clinical trials should be disclosed so that prescribers can see the evidence on what those drugs do to patients, then the important thing is that trials in patients should be published. Trials in healthy volunteers, while they should also be published in an ideal world, are a lower priority.

So what about the phase III trials? Phase III trials are the important ones, usually randomised controlled trials in large numbers of patients, which tell you whether the drug works and what its side effects are like. Miller et al report that 20% of drugs had at least 1 undisclosed phase III trial. That’s an interesting way of framing it. Another way of putting is is that 80% of the drugs had every single one of their phase III trials in the public domain. I think that suggests that trial disclosure is working rather well, don’t you? Unfortunately, the way Miller et al present their data doesn’t allow the overall percentage disclosure of phase III trials to be determined, and my request to the authors to share their data has so far gone unheeded (of which more below), but it is clearly substantially higher than 80%. Obviously anything less than 100% still has room for improvement, but the scare stories about a third of trials being hidden clearly don’t stack up.

And talking of trials being “hidden”, that is rather emotive language to describe what may simply be small delays in publication. Miller et al applied a cutoff date of 1 February 2014 in their analysis, and if results were not disclosed by that date then they considered them to be not disclosed. Now of course results should be disclosed promptly, and if it takes a bit longer, then that is a problem, but it is really not the same thing as claiming that results are being “kept secret”. Just out of interest, I checked on one of the drugs that seemed to have a particularly low rate of disclosure. According to Miller et al, the application for Perjeta was based on 12 trials, and only 8% had results reported on clinicaltrials.gov. That means they considered only one of them to have been reported. According to the FDA’s medical review (see page 29), 17 trials were submitted, not 12, which makes you wonder how thorough Miller et al’s quality control was. Of those 17 trials, 14 had been disclosed on clinicaltrials.gov when I looked. So had Miller et al used a different cut-off date, they would have found 82% of trials with results posted, not 8%.

I would like to be able to tell you more about the lower disclosure rates for phase I trials. Phase I trials are done early in a drug’s development, and so the phase I trials included in this study would typically have been done many years ago. It is possible that the lower publication rate for phase I trials is because phase I trials are intrinsically less likely to be published than trials in patients, but it is also possible that it is simply a function of when they were done. We know that publication rates have been improving over recent years, and it is possible that the publication rate for phase I trials done a decade or more ago is not representative of the situation today.

Sadly, I can’t tell you more about that. To distinguish between those possibilities, I would need to see Miller et al’s raw data. I did email them to ask for their raw data, and they emailed back to say how much they support transparency and data sharing, but haven’t actually sent me their data. It’s not entirely clear to me whether that’s because they have simply been too busy to send it or whether they are only in favour of transparency if other people have to do it, but if they do send the data subsequently I’ll be sure to post an update.

The other problem here is that, as I mentioned earlier, we are looking at a subgroup analysis. I think this may be important, as another study that looked at disclosure of drugs approved in 2012 found very different results. Rawal and Deane looked at drugs approved by the EMA in 2012, and found that 92% of the relevant trials had been disclosed. Again, it’s less than 100%, and so not good enough, but it certainly shows that things are moving in the right direction. And it’s a lot higher than the 65% that Miller et al found.

Why might these studies have come to such different results? Well, they are not looking at the same drugs. Not all of the drugs approved by the FDA in 2012 were approved by the EMA the same year. 48 drugs were approved by the FDA, and 23 by the EMA. Only 11 drugs were common to both agencies, and only 3 of those 11 drugs were included in Miller et al’s analysis. Perhaps the 15 drugs selected by Miller et al were not a representative sample of all 48 drugs approved by the FDA. It would be interesting to repeat Miller et al’s analysis with all 48 of the drugs approved by the FDA to see if the findings were similar, although I doubt that anyone will ever do that.

But personally, I would probably consider a study that looked at all eligible trials more reliable than one that chose an arbitrary subset, so I suspect that 92% is a more accurate figure for trial disclosure for drugs approved in 2012 than 65%.

Are 100% of clinical trials being disclosed? No, and this study confirms that. But it also shows that we are getting pretty close, at least for the trials most relevant for prescribers. Until 100% of trials are disclosed, there is still work to do, but things are not nearly as bad as the doom-mongers would have you believe. Transparency of clinical trial reporting is vastly better than it used to be, and don’t let anyone tell you otherwise.

Update 23 January 2016:

I have still not received the raw data for this study, more than 2 months after I asked for it. I think it is safe to assume that I’m not going to get it now. That’s disappointing, especially from authors who write in support of transparency.

 

 

 

Mythbusting medical writing

I have recently published a paper, along with my colleagues at GAPP, addressing some of the myths surrounding medical writing.

As an aside, this was my last act as a GAPP member, and I have now stood down from the organisation. It was a privilege to be a founder member, and I am very proud of the work that GAPP has done, but now that I am no longer professionally involved in medical writing it seemed appropriate to move on.

Anyway, the paper addresses 3 myths surrounding the role of professional medical writers in preparing publications for the peer-reviewed medical literature:

  • Myth No 1: Medical writers are ghostwriters
  • Myth No 2: Ghostwriting is common
  • Myth No 3: Researchers should not need medical writing support

(Spoiler alert: none of those 3 things is actually true.)

Unfortunately, the full paper is paywalled. Sorry about that. This wasn’t our first choice of journal: the article was originally written in response to an invitation to write the article from another journal, who then rejected it. And as GAPP has no funding, there was no budget to pay for open access publishing.

But luckily, the journal allows me to post the manuscript as submitted (but not the nice neat typeset version) on my own website.

So here it is. Happy reading.

Zombie statistics on half of all clinical trials unpublished

You know what zombies are, right? No matter how often you kill them, they just keep coming back. So it is with zombie statistics. No matter how often they are debunked, people will keep repeating them as if they were a fact.

zombies

Picture credit: Scott Beale / Laughing Squid

As all fans of a particular horror movie genre know, the only way you can kill a zombie is to shoot it in the head. This blog post is my attempt at a headshot for the zombie statistic “only half of all clinical trials have ever been published”.

That statistic has been enthusiastically promoted by the All Trials campaign. The campaign itself is fighting for a thoroughly good cause. Their aim is to ensure that the results of all clinical trials are disclosed in the public domain. Seriously, who wouldn’t want to see that happen? Medical science, or indeed any science, can only progress if we know what previous research has shown.

But sadly, All Trials are not being very evidence-based in their use of statistics. They have recently written yet another article promoting the “only half of all clinical trials are published” zombie statistic, which I’m afraid is misleading in a number of ways.

The article begins: “We’re sometimes asked if it’s still true that around half of clinical trials have never reported results. Yes, it is.” Or at least that’s how it starts today. The article has been silently edited since it first appeared, with no explanation of why. That’s a bit odd for an organisation that claims to be dedicated to transparency.

The article continues “Some people point towards recent studies that found a higher rate of publication than that.” Well, yes. There are indeed many studies showing much higher rates of publication for recent trials, and I’ll show you some of those studies shortly. It’s good that All Trials acknowledge the recent increase in publication rates.

“But these studies look at clinical trials conducted very recently, often on the newest drugs, and therefore represent a tiny fraction of all the clinical trials that have ever been conducted”, the All Trials campaign would have us believe.

It’s worth looking at that claim in some detail.

Actually, the studies showing higher rates of publication are not necessary conducted very recently. It’s true that some of the highest rates come from the most recent studies, as there has been a general trend to greater disclosure for some time, which still seems to be continuing. But rates have been increasing for a while now (certainly since long before the All Trials campaign was even thought of, in case you are tempted to believe the spin that recent increases in disclosure rates are a direct result of the campaign), so it would be wrong to think that rates of publication substantially higher than 50% have only been seen in the last couple of years. For example, Bourgeois et al’s 2010 study, which found 80% of trials were disclosed in the public domain, included mostly trials conducted over 10 years ago.

It’s a big mistake to think that trials in the last 10 years have a negligible effect on the totality of trials. The number of clinical trials being done has increased massively over time, so more recent trials are actually quite a large proportion of all trials that have ever been done. And certainly a large proportion of all trials that are still relevant. How much do you think this 1965 clinical trial of carbenoxolone sodium is going to inform treatment of gastric ulcers today in the era of proton pump inhibitors, for example?

If we look at the number of randomised controlled trials indexed in PubMed over time, we see a massive increase over the last couple of decades:

Graph

In fact over half of all those trials have been published since 2005. I wouldn’t say over half is a “tiny fraction”, would you?

“Ah”, I hear you cry, “but what if more recent trials are more likely to be published? Maybe it only looks like more trials have been done recently.”

Yes, fair point. It is true that in the last century, a significant proportion of trials were unpublished. Maybe it was even about half, although it’s hard to know for sure, as there is no good estimate of the overall proportion, despite what All Trials would have you believe (and we’ll look at their claims in more detail shortly).

But even if we make the rather extreme assumption that up to 2000 only half of all trials were published, then the rate increased evenly up to 2005 from which point 100% of trials were published, then the date after which half of all trials were done only shifts back as far as 2001.

So the contribution of recent trials matters. In fact even the All Trials team themselves tacitly acknowledge this, if you look at the last sentence of their article:

“Only when all of this recent research is gathered together with all other relevant research and assessed in another systematic review will we know if this new data changes the estimate that around half of clinical trials have ever reported results.”

In other words, at the moment, we don’t know whether it’s still true that only around half of clinical trials have ever reported results. So why did they start by boldly stating that it is true?

The fact is that no study has ever estimated the overall proportion of trials that have been published. All Trials claim that their figure of 50% comes from a 2010 meta-analysis by Song et al. This is a strange claim, as Song et al do not report a figure for the proportion of trials published. Go on. Read their article. See if you can find anything saying “only 50% of trials are published”. I couldn’t. So it’s bizarre that All Trials claim that this paper is the primary support for their claim.

The paper does, however, report publication rates in several studies of completeness of publication, and although no attempt is made to combine them into an overall estimate, some of the figures are in the rough ballpark of 50%. Maybe All Trials considered that close enough to support a nice soundbite.

But the important thing to remember about the Song et al study is that although it was published in 2010, it is based on much older data. Most of the trials it looks at were from the 1990s, and many were from the 1980s. The most recent study included in the review only included trials done up to 2003. I think we can all agree that publication rates in the last century were way too low, but what has happened since then?

Recent evidence

Several recent studies have looked at completeness of publication, and have shown disclosure rates far higher than 50%.

One important thing to remember is that researchers today have the option of posting their results on websites such as clinicaltrials.gov, which were not available to researchers in the 1990s. So publication in peer reviewed journals is not the only way for clinical trial results to get into the public domain. Any analysis that ignores results postings on websites is going to greatly underestimate real disclosure rates. Some trials are posted on websites and not published in journals, while others are published in journals but not posted on websites. To look at the total proportion of trials with results disclosed in the public domain, you have to look at both.

There may be a perception among some that posting results on a website is somehow “second best”, and only publication in a peer-reviewed journal really counts as disclosure. However, the evidence says otherwise. Riveros et al published an interesting study in 2013, in which they looked at completeness of reporting in journal publications and on clinicaltrials.gov. They found that postings on clinicaltrials.gov were generally more complete than journal articles, particularly in the extent to which they reported adverse events. So perhaps it might even be reasonable to consider journal articles second best.

But nonetheless, I think we can reasonably consider a trial to be disclosed in the public domain whether it is published in a journal or posted on a website.

So what do the recent studies show?

Bourgeois et al (2010) looked at disclosure for 546 trials that had been registered on clinicaltrials.gov. They found that 80% of them had been disclosed (66% in journals, and a further 14% on websites). The results varied according to the funder: industry-sponsored trials were disclosed 88% of the time, and government funded trials 55% of the time, with other trials somewhere in between.

Ross et al (2012) studied 635 trials that had been funded by the NIH, and found 68% had been published in journals. They didn’t look at results posting on websites, so the real disclosure rate may have been higher than that. And bear in mind that government funded trials were the least likely to be published in Bourgeois et al’s study, so Ross et al’s results are probably an underestimate of the overall proportion of studies that were being disclosed in the period they studied.

Rawal and Deane published 2 studies, one in 2014 and one in 2015. Their 2014 study included 807 trials, of which 89% were disclosed, and their 2015 study included 340 trials, of which 92% were disclosed. However, both studies included only trials done by the pharmaceutical industry, which had the highest rates of disclosure in Bourgeois et al’s study, so we can’t necessarily assume that trials from non-industry sponsors are being disclosed at such a high rate.

Taken together, these trials show that the claim that only 50% of trials are published is really not tenable for trials done in the last decade or so. And remember that trials done in the last decade or so make up about half the trials that have ever been done.

Flaws in All Trials’s evidence

But perhaps you’re still not convinced? After all, All Trials include on their page a long list of quite recent references, which they say support their claim that only half of all trials are unpublished.

Well, just having a long list of references doesn’t necessarily mean that you are right. If it did, then we would have to conclude that homeopathy is an effective treatment, as this page from the Society of Homeopaths has an even longer reference list. The important thing is whether the papers cited actually back up your claim.

So let’s take a look at the papers that All Trials cite. I’m afraid this section is a bit long and technical, which is unavoidable if we want to look at the papers in enough detail to properly assess the claims being made. Feel free to skip to the conclusions of this post if long and technical looks at the evidence aren’t your bag.

We’ve already looked at All Trials’s primary reference, the Song et al systematic review. This does show low rates of publication for trials in the last century, but what do the more recent studies show?

Ross et al, 2009, which found that 46% of trials on ClinicalTrials.gov, the world’s largest clinical trials register, had reported results.

For a start, this trial is now rather old, and only included trials up to 2005, so it doesn’t tell us about what’s been happening in the last decade. It is also likely to be a serious underestimate of the publication rate even then, for 3 reasons. First, the literature search for publication only used Medline. Many journals are not indexed in Medline, so just because a study can’t be found with a Medline search does not mean it’s not been published. Pretty much the first thing you learn at medical literature searching school is that searching Medline alone is not sufficient if you want to be systematic, and it is important to search other databases such as Embase as well. Second, and perhaps most importantly, it only considers publications in journals, and does not look at results postings on websites. Third, although they only considered completed trials, 46% of the trials they studied did not report an end date, so it is quite possible that those trials had finished only recently and were still being written up for publication.

Prayle et al, 2012, which found 22% of clinical trials had reported summary results on ClinicalTrials.gov within one year of the trial’s completion, despite this being a legal requirement of the US’s Food and Drug Administration Amendments Act 2007.

This was a study purely of results postings, so tells us nothing about the proportion of trials published in journals. Also, the FDA have criticised the methods of the study on several grounds.

Jones et al, 2013, which found 71% of large randomised clinical trials (those with 500 participants or more) registered on ClinicalTrials.gov had published results. The missing 29% of trials had approximately 250,000 trial participants.

71% is substantially higher than 50%, so it seems odd to use this as evidence to support the 50% figure. Also, 71% is only those trials published in peer-reviewed journals. The figure is 77% if you include results postings on websites. Plus the study sample included some active trials and some terminated trials, so is likely to be an underestimate for completed trials.

Schmucker et al, 2014, which found that 53% of clinical trials are published in journals. This study analysed 39 previous studies representing more than 20,000 trials.

This is quite a complex study. It was a meta-analysis, divided into 2 parts: cohorts of studies approved by ethics committees, and cohorts of studies registered in trial registries. The first part included predominantly old trials from the 1980s and 1990s.

The second part included more recent trials, but things start to unravel if you look at some of the studies more carefully. The first problem is that they only count publications in journals, and do not look at results postings on websites. Where the studies reported both publications and results postings, only the publications were considered, and results postings were ignored.

As with any meta-analysis, the results are only as good as the individual trials. I didn’t look in detail at all the trials included, but I did look at some of the ones with surprisingly low rates of disclosure. The largest study was Huser et al 2013, which found only a 28% rate of disclosure. But this is very misleading. It was only the percentage of trials that had a link to a publication in the clinicaltrials.gov record. Although sponsors should come back and update the clinicaltrials.gov record when they have published the results in a journal to provide a link to the article, in practice many don’t. So only to look at records with such a link is going to be a massive underestimate of the true publication rate (and that’s before we remember that results postings on the clinicaltrials.gov website weren’t counted). It is likely that manually searching for the articles would have found many more trials published.

Another study with a low publication rate included in the meta-analysis was Gopal et al 2012. The headline publication rate was 30%, out of a sample size of of 818. However, all 818 of those had had results posted on clinicaltrials.gov, so in fact the total disclosure rate was 100%, although of course that is meaningless as that was determined by their study design rather than a finding of the study.

The other study with a surprisingly low proportion of disclosed trials was Shamilyan et al 2012, which found only a 23% publication rate. This was only a small study (N=112), but apart from that the main flaw was that it only searched Medline, and used what sounds like a rather optimistic search strategy, using titles and ID numbers, with no manual search. So as far as I can tell from this, if a paper is published without indexing the clinicaltrials.gov ID number (and unfortunately many papers don’t) and didn’t use exactly the same verbatim title for the publication as the clinicaltrials.gov record, then publications wouldn’t have been found.

I haven’t checked all the papers, but if these 3 are anything to go by, there are some serious methodological problems behind Schumcker et al’s results.

Munch et al, 2014, which found 46% of all trials on treatments for pain had published results.

This was a study of 391 trials, of which only 181 had published results, which is indeed 46%. But those 391 trials included some trials that were still ongoing. I don’t think it’s reasonable to expect that a trial should be published before it is completed, do you? If you use the 270 completed trials as the denominator, then the publication rate increases to 67%. And even then, there was no minimum follow-up time specified in the paper. It is possible that some of those trials had only completed shortly before Munch et al searched for the results and were still being written up. It is simply not possible to complete a clinical study one day and publish the results the next day.

Anderson et al, 2015, which found that 13% of 13,000 clinical trials conducted between January 2008 and August 2012 had reported results within 12 months of the end of the trial. By 5 years after the end of the trial, approximately 80% of industry-funded trials and between 42% and 45% of trials funded by government or academic institutions had reported results.

I wonder if they have given the right reference here, as I can’t match up the numbers for 5 years after the end of the trial to anything in the paper. But the Anderson et al 2015 study that they cite did not look at publication rates, only at postings on clinicaltrials.gov. It tells us absolutely nothing about total disclosure rates.

Chang et al, 2015, which found that 49% of clinical trials for high-risk medical devices in heart disease were published in a journal.

The flaws in this study are very similar to those in Ross et al 2009: the literature search only used Medline, and results posting on websites was ignored.

Conclusions

When you look at the evidence in detail, it is clear that the claim that half of all clinical trials are unpublished is not supported. The impression one gets from reading the All Trials blog post is that they have decided that “half of all trials are unpublished” is a great soundbite, and then they try desperately to find evidence that looks like it might back it up if it is spun in a certain way and limitations in the research are ignored. And of course research showing higher rates of disclosure is also ignored.

This is not how to do science. You do not start with an answer and then try to look for a justification for it, while ignoring all disconfirming evidence. You start with a question and then look for the answer in as unbiased a way as possible.

It is disappointing to see an organisation nominally dedicated to accuracy in the scientific literature misusing statistics in this way.

And it is all so unnecessary. There are many claims that All Trials could make in support of their cause without having to torture the data like this. They could (and indeed do) point out that the historic low rate of reporting is still a problem, as many of the trials done in the last century are still relevant to today’s practice, and so it would be great if they could be retrospectively disclosed. If that was where their argument stopped, I would have no problem with it, but to claim that those historic low rates of reporting apply to the totality of clinical trials today is simply not supported by evidence.

All Trials could also point out that the rates of disclosure today are less than 100%, which is not good enough. That would also be a statement no reasonable person could argue with. They could even highlight the difficulty in finding research: many of the studies above do not show low rates of reporting, but they do show that reports of clinical trials can be hard to find. That is definitely a problem, and if All Trials want to suggest a way to fix it, that would be a thoroughly good thing.

There is no doubt that All Trials is fighting for a worthy cause. We should not be satisfied until 100% of clinical trials are disclosed, and we are not there yet. But to claim we are still in a position where only half of clinical trials are disclosed, despite all the evidence that rates of disclosure today are more typically in the region of 80-90%, is nothing short of dishonest.

I don’t care how good your cause is, there is never an excuse for using dodgy statistics as part of your campaigning.

 

Psychology journal bans P values

I was rather surprised to see recently (OK, it was a couple of months ago, but I do have a day job to do as well as writing this blog) that the journal Basic and Applied Social Psychology has banned P values.

That’s quite a bold move. There are of course many problems with P values, about which David Colquhoun has written some sensible thoughts. Those problems seem to be particularly acute in the field of psychology, which suffers from something of a problem when it comes to replicating results. It’s undoubtedly true that many published papers with significant P values haven’t really discovered what they claimed to have discovered, but have just made type I errors, or in other words, have obtained significant results just by chance, rather than because what they claim to have discovered is actually true.

It’s worth reminding ourselves what the conventional test of statistical significance actually means. If we say we have a significant result with P < 0.05, then that means that there is a 1 in 20 chance we would have seen that result if in fact we had completely random data. A 1 in 20 chance is not at all rare, particularly when you consider the huge number of papers that are published every day. Many of them are going to have type I errors.

Clearly, something must be done.

However, call me a cynic if you like, but I’m not sure how banning P values (and confidence intervals as well, if you thought just banning P values was radical enough) is going to help. Perhaps if all articles in Basic and Applied Social Psychology in the future have robust Bayesian analyses that would be an improvement. But I hardly think that’s likely to happen. What is more likely is that researchers will claim to have discovered effects even if they are not conventionally statistically significant, which surely is even worse than where we were before.

I suspect one of the problems with psychology research is that much research, particularly negative research, goes unpublished. It’s probably a lot easier to get a paper published showing that you have just demonstrated some fascinating psychological effect than if you have just demonstrated that the effect you had hypothesised doesn’t in fact exist.

This is a problem we know well in my world of clinical trials. There is abundant evidence that positive clinical trials are more likely to be published than negative ones. This is a problem that the clinical research community has become very much aware of, and has been working quite hard to solve. I wouldn’t say it is completely solved yet, but things are a lot better now than they were a decade or two ago.

One relevant factor is the move to prospective trial registration.  It seems that prospectively registering trials is helping to solve the problem of publication bias. While clinical research doesn’t yet have a 100% publication record (though some recent studies do show disclosure rates of > 80%), I suspect clinical research is far ahead of the social sciences.

Perhaps a better solution to the replication crisis in psychology would be a system for prospectively registering all psychology experiments and a commitment by researchers and journals to publish all results, positive or negative. That wouldn’t necessarily mean more results get replicated, of course, but it would mean that we’d be more likely to know about it when results are not replicated.

I’m not pretending this would be easy. Clinical trials are often multi-million dollar affairs, and the extra bureaucracy involved in trial registration is trivial in comparison with the overall effort. Many psychology experiments are done on a much smaller scale, and the extra bureaucracy would probably add proportionately a lot more to the costs. But personally, I think we’d all be better off with fewer experiments done and more of them being published.

I don’t think the move by Basic and Applied Social Psychology is likely to improve the quality of reporting in that journal. But if it gets us all talking about the limitations of P values, then maybe that’s not such a bad thing.

 

Does peer review fail to spot outstanding research?

A paper by Siler et al was published last week which attracted quite a bit of attention among those of us who take an interest in scientific publishing and the peer review process. It looked at the citation count of papers that had been submitted to 3 high-impact medical journals and subsequently published, either in one of those 3 journals or in another journal if rejected by one of the 3.

The accompanying press release from the publisher told us that “scientific peer review may have difficulties identifying unconventional and/or outstanding work”. This wasn’t too far off what was claimed in the paper, where Siler et al concluded that their work suggested that peer review “had difficulties in identifying outstanding or breakthrough work”.

The press release was reported uncritically by several organisations that should have known better, including Science, Nature,  and Retraction Watch.

It’s an interesting theory. The theory goes that peer reviewers don’t like to get out of their comfort zone, and while they may give good reviews to small incremental advances in their field, they don’t like radical new research that breaks new ground, so such research may be rejected.

The only problem with this theory is that Siler et al’s paper provides absolutely no data to support it.

Let’s look at what they did. They looked at 1008 manuscripts that were submitted to 3 top-tier medical journals (Annals of Internal Medicine, British Medical Journal, and The Lancet). Most of those papers were rejected, but subsequently published in other journals. Siler et al tracked the papers to see how many times each paper was cited.

Now, there we have our first problem. Using the number of times a paper is cited as a measure of groundbreaking research is pretty crude. Papers can be highly cited for many reasons, and presenting groundbreaking research is only one of them. I am writing this blogpost on the same day that I found that the 6th most important paper of the year according to “Altmetrics” (think of it as citation counting for the Facebook generation), was about how long it takes for boxes of chocolates on hospital wards to be eaten. A nicely conducted and amusing piece of research, to be sure, but hardly breaking new frontiers in science.

There’s also something rather fishy about the numbers of citations reported in the paper. The group of papers with the lowest citation rate reported in the paper were cited an average of 69.8 times each. That’s an extraordinarily high number. Of the 3 top-tier journals studied, The Lancet has the highest impact factor, at 39.2. That means that papers in The Lancet are cited an average of 39.2 times each. Doesn’t it seem rather odd that papers rejected from it are cited almost twice as often? I’m not sure what to make of that, but it does make me wonder if there is a problem with data quality.

Anyway, the main piece of evidence used to support the idea that peer review was bad at recognising outstanding research is that the 14 most highly cited papers of the 1008 papers examined were rejected by the 3 top journals. The first problem with that is that 12 of those 14 were rejected by the journals’ in-house editorial staff without being sent for peer review. So even if there were no further problems with the paper, we couldn’t draw any conclusions about failings of peer review: the failings would be down to journals’ in-house staff.

Another problem is that those 14 papers were not, of course, rejected by the peer review system. They were all published in peer reviewed journals: just not the first journal that the authors tried. So we really can’t conclude that peer review is preventing groundbreaking work from being published.

But in any case, if we ignore those flaws and ask ourselves is it still not true that groundbreaking (or at least highly cited) research is being rejected, I think we’d want to know that the highly cited research is more likely to be rejected than other research.

And I’m afraid the evidence for that is totally lacking.

Rejecting the top 14 papers sounds bad. But it’s important to realise that the overall rejection rate was very high: only 6.2% of the papers submitted were accepted. If the probability of accepting each of the top 14 papers was 6.2%, like all the others, then there is about a 40% chance that all 14 of them would be rejected. And that is ignoring the fact that looking specifically at the top 14 papers is a post-hoc analysis. The only robust way to see if the more highly cited papers were more likely to be rejected would have been to specify a specific hypothesis in advance, rather than to focus on what came out of the data as being the most impressive statistic.

So, to recap, this paper used a crude measure of whether papers were groundbreaking, did not look at what peer reviewers thought of them, found precisely zero high impact articles that were rejected by the peer review system, and found no evidence whatsoever that high-impact articles were more likely to be rejected than any others.

Call me a cynic if you like, but I’m not convinced. The peer review process is not perfect, of course, But if you want to convince me that one of its flaws is that it is biased against groundbreaking research, you’re going to have to come up with better evidence than Siler et al’s paper.